L4 One Dimensional Motion


⚿1: Quantities:   Δt, Δs, v, a

⚿2: Relationships: Derivatives & Integrals

$$ \mathbf { \vec v }(t) = {{ d \, \mathbf {\vec s} (t) } \over { d \, t}} $$ $$ \mathbf { \vec a }(t) = {{ d \, \mathbf {\vec v} (t) } \over { d \, t}} $$
$$ \mathbf { \vec v }(t) = \int { \mathbf { \vec a }(t) \, dt } $$ $$ \mathbf { \vec s }(t) = \int { \mathbf { \vec v }(t) \, dt } $$

⚿3: Representations: Motion Diagrams & Graphs

Observer at position 0. Draw the motion diagram for each case with vector for v and a. Note all images are for special case of constant acceleration.motiongraph

Knight Chapter 2 Lecture Slides


The Moving Man
One Dimensional Motion (Graphs)

中文版

  /   教學   /   物理   baixiaoming AT gmail.com